EE421/521
Image Processing

Lecture 12a
IMAGE RECONSTRUCTION

Introduction
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Image Recovery

o Image Restoration
Undoing imaging degradations

o Image Reconstruction
Filling in for missing data

Reconstruction from CT
Projections

Complete projection, g(p, 0;).
for a fixed angle —
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Reconstruction
from Fourier
Phase

Reconstruction from Magnitude-
Only and Phase-Only Images

Fig.4.24(a). (f) RBE
Gl fi
FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to 6
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the

spectrum of the woman.




Reconstruction from Phase-
Only Image

Finite Image Support
Assumption

Image with finite support Observed Fourier phase

8
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Why Reconstruction is
Possible

Unknown intensities in less Unique information in
than half of the image half of the Fourier phase 9

Reconstruction Algorithm:
Initialization

IDFT

Observed Start with uniform Resulting image Image with
Fourier phase Fourier magnitude after IDFT finite support
constraint
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Finite Support Constraint

"

Reconstruction Algorithm:
Iterations

Enforce finite
Fourier support
Fourier phase magnitude constraint

Image
reconstructed in
previous iteration

IDFT

Replace with Keep Fourier
original Fourier magnitude
12 phase




After Several Iterations of
A&B...

Reconstruction
from CT
Projections
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° ‘ Computed Tomography

EI ::#f:::::f:.:\\::::::::r_ﬂ ¥ A point g(pj, k) in
- 4 N\ bl Q the projection

Complete projection, g(p. ;).
a fixed angle —

\ (@’ \‘v“‘v‘“\"\ .

Subject
] ]
Detector
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Can We Recover the Image
from its Projections?
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Reconstruction via
Backprojections

17

Blurring Caused by
Backprojections

abc
d f

FIGURES.’M (a ) objec (h) (d) Reci ruction using 1, 2, and 4
jection e Rc t t with 3 2 b kp ojections 5.625° p It
projections 2. 8125 apar

:g,—;,
z
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o Projection of a Disk

Same in every direction /

- N
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Series of Projections:
Radon Transform

g(r,0) = }}f(x,y)é(xcost9+ysinﬁ—r)dxdy

Integration
along a line

(x,7) (x,y)*(rcos@,rsinf) = r’

(rcos@,rsinf)

S

/)\

20

10



Radon Transform
(Sinogram)

y )
S(x,»)

g(r,0)

\ > X

\

How can we get back f(x, ) from g(r,0)?

21

Radon Transform Example

180

135

6 90

45
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. Reconstruction with
Backprojections

R /2
f(x,y)=ffg(r,@)é(xc0s0+ysinH—r)drdé‘

—7/2 -0

BN

23

‘ Reconstruction with
Backprojections

JT/Z o]

fle,y)= [ [&(r0)3(xcos0+ ysing-r)dr do

-7)2 -

/2
fly)= fg(xcosﬁ+ysinl9,l9) do

-/2

oo 00 JT/Z

f(x,y)=fff(x’,y’)fé((x'—x)cos0+(y’—y)sinH)dﬁdxdy

—00—00 -/2

24
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Reconstruction with
Backprojections

/2

flx,y)= fff(x',y')fé((x’—x)cos6?+(y'—y)sin@)d@dxdy

Jey)=[[rf (N =2y + (=32 )" dx' dy'

-/2

Causes
1 blurring

2

2
X +Yy

fA(xay)=f(x>y)**

Approach 1:
Fourier Slice
Theorem

26
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Fourier Transform of
Projections

o Compute the 1-D Fourier transform of the Radon
transform with respect to 7.

G(w,0) = fg(r, 0) e’ " dr

A projection o FT of the 0 G(a) 0)
b

g(r,0) projection \

27

Fourier Transform of
Projections

®© 0o ®

G(w,6)=ffff(x,y)é(xcosﬁ+ysiné’—r)e‘j”drdxdy

——————

© oo

=fff(x,y)}é(xcos¢9+ysinﬁ—r)e'j’"drdxdy

— }}f(x’y)e—ia)xcosﬁe—jwycosﬁdx dy

= F(wcos8,wsin )

A rotated line
28
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Fourier Slice (Projection
Slice) Theorem

v

2-D Fourier
Proect transform
rojection ~ F(u,v)

\ ]
X u

transform The 1-D
Fourier transform
of a projection is
a slice of the 2-D
Fourier transform

29
° Polar Sampling
F(u,v) at u=wcosl, v=wsind
%
Uniform
sampling
along @, 6
\ Polar sample
u locations for
u,v
30
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Polar to Rectangular
Sampling Conversion

F(u,v)

Approach 2:
Filtered
Backprojections

26/12/13
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Reconstruction Equations

f(x,y)= f fF(u,v) ™™ du dv

T

= ffF(wcosH,wsinH) e/ s s gy dey d

©

- f CUG(CU,H) ejw(xcosﬁ+ysin6)dwd0

o

33

Correct Reconstruction from
Backprojections

72 »
f(x’y) = f (f|a)| G(CU,&) ejw(xcos@+ysin9)dw do

-7/2

—00

g(r,0) = G(w,0) = || G(w,0) = ¢'(r,6)

/2
' flxy)= fg'(xcos¢9+ysinl9,0)d¢9
-7/2

34
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° ‘ Ramp Filter

]
Ringing
artifacts
Freq Spatial
domn domain
Hamming Some Reduced
window smoothness ringing
. N o B VIVe .
requency requency Spatial
domain domain domain

Reconstruction
from Partial
Projections

26/12/13
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Missing Projections

37

Missing Angles in the
Radon Transform

G(w,0) = fg(r, 0)e’ " dr

0 0
g(r,0) G(w,0)

] |
1)
| |

38
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Missing Samples in the 2D
Fourier Transform

F(u,v) at u=wcosl, v=wsinf
v

39

POCS Solution

Match existing samples
in the 2D Fourier transform

Enforce finite image support and
positivity of pixel intensities

40
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Project 3.3a

Image Reconstruction
Due 12.01.2013 Sunday

Image Reconstruction via
POCS

Match existing samples

Enforce finite image support
and positivity of pixel
intensities

v
_ in the 2D Fourier transform

42
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Problem 3.3a

o Select a 256x256 monochrome image and display it.

o Pad zeros to the right and to the bottom of this image and then
take its 512x512 DFT—call it D(k,I).

o Define D'(k,I) to be the observed DFT of the image with
missing segments:
0 50=<k <150
D'(k,)=1 0  362<k=<462
D(k,l)  elsewhere

o Take the inverse DFT of D'(k,/) and apply the “256x256
support” and “0—255 amplitude” constraint.

o Take the DFT of the image obtained in the previous step and
match the observed samples of D'(k,/).

o Repeat the previous two steps 5 times and display the results
after each iteration. Comment on the results.
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Next Lecture

o IMAGE COMPRESSION

44

26/12/13

22



